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ABSTRACT
JSON – the most popular data format for sending API re-
quests and responses – is still lacking a standardized schema
or meta-data definition that allows the developers to spec-
ify the structure of JSON documents. JSON Schema is an
attempt to provide a general purpose schema language for
JSON, but it is still work in progress, and the formal spec-
ification has not yet been agreed upon. Why this could be
a problem becomes evident when examining the behaviour
of numerous tools for validating JSON documents against
this initial schema proposal: although they agree on most
general cases, when presented with the greyer areas of the
specification they tend to differ significantly. In this paper
we provide the first formal definition of syntax and seman-
tics for JSON Schema and use it to show that implementing
this layer on top of JSON is feasible in practice. This is done
both by analysing the theoretical aspects of the validation
problem and by showing how to set up a JSON Schema for
Wikidata, the central storage for Wikimedia, and validate it
against the entire Wikidata database.

1. INTRODUCTION
JSON (JavaScript Object Notation) [5, 19, 9] is a data

format based on the data types of the JavaScript program-
ming language. Over the last few years JSON has gained
tremendous popularity among web developers, and has be-
come the main format for exchanging information over the
web. Moreover, JSON is also gaining terrain in the area of
database management systems [24, 25].

JSON plays a key role in most web applications used
nowadays. Indeed, software executing functions ordered by
remote machines must establish a precise protocol for receiv-
ing and answering requests, which is called an Application
Programming Interface (API). Given that JSON is a lan-
guage which can be easily understood by both developers
and machines, it has become the most popular format to
send API requests and responses over the HTTP protocol.
As an example, consider an application containing in forma-
tion about weather conditions around the world. On top of
this application, we could provide a public API to let other
people integrate information about the weather into their
software. In this case a hypothetical API call could be a
request containing the JSON file

{"Country": "Chile", "City": "Santiago"},

by which a client is requesting the current weather con-
ditions in Santiago, Chile. The API would reply with an
HTTP response containing the JSON file

{"timestamp": "14/10/2015 11:59:07",
"temperature": 25, "Country": "Chile",
"City": "Santiago", "description": "Sunny"},

indicating that the temperature is 25 degrees and the day is
sunny. This example illustrates the simplicity and readabil-
ity of JSON, which partially explains its fast adoption.

With the popularity of JSON it was soon noted that in
many scenarios one can benefit from a declarative way of
specifying a schema for JSON documents, and indeed the
lack of a schema or a meta-data language is recurrently cited
as one of the shortcomings of the JSON format when com-
pared to other established alternatives such as XML. For
example, in the public API scenario one could use a schema
to avoid receiving malicious or malformed API calls that
may affect the inner engine of the application. Coming back
to the weather application, note that the API calls consist of
JSON objects mentioning two strings: a country and a city.
What happens if a user does not specify both strings, or if he
or she specifies more properties in the JSON object? Simi-
lar issues arise if the user uses a number or a boolean value
instead of a string. Without an integrity layer all of these
questions need to be taken into consideration when coding
the API, and could be avoided if we use a schema defini-
tion to filter out documents that are not of the correct form.
A declarative schema specification would also give develop-
ers a standardised language to specify what type of JSON
documents are accepted as inputs and outputs by their API.

JSON Schema [20] is a simple schema language that allows
users to constrain the structure of JSON documents and pro-
vides a framework for verifying the integrity of the requests
and their compliance to the API. If we consider again the
weather API, by simply adding the following JSON Schema
we can assure the correct form of each API call:

{
"type": "object",
"properties": {
"Country": {"type": "string"},
"City": {"type": "string"},

},
"required": ["Country", "City"]
"additionalProperties": false,

}

This schema asserts that the received JSON document
must be of type object (a collection of key-value pairs), it
should contain keys "Country" and "City", both required
and with a string value attached to them, and there cannot
be any more keys. For example, the JSON file requesting
the weather in Santiago, Chile would comply to this schema,



but the JSON file {"Country": "Croatia", "City": 5}

would not as the value of the city is not a string.
To our best knowledge, JSON Schema is the only general

attempt to define a schema language for JSON documents,
and it is slowly being established as the default schema spec-
ification for JSON. The definition is still far from being a
standard (the specification is currently in its fourth draft
[10]), but there is already a growing body of applications
that support JSON schema definitions, and a good deal of
tools and packages that enable the validation of documents
against JSON Schema. There have been other alternatives
for defining schemas for JSON documents, but these are ei-
ther based on JSON Schema itself or have been designed
with a particular set of use cases in mind. To name a few
of them, Orderly [16] is an attempt to improve the read-
ability of a subset of JSON Schema, Swagger [2], RAML
[30] and Google discovery [12] are proposals for standardis-
ing API definition that use JSON Schema, and JSON-LD
[27] is a context specific schema definition for JSON docu-
ments, namely for specifying RDF as JSON. It is important
to mention that JSON has gained immense popularity due to
its simplicity, and JSON Schema provides an equally simple
framework that could further enrich web processes.

Despite all the advantages of a schema definition, the
adoption of JSON Schema has been rather slow. One of
the issues that have prevented the widespread recognition
of JSON Schema as a standard for JSON meta-data is the
lack of a formal specification. The current draft addresses
most typical problems that would show up when using JSON
Schema, but the definitions lack the detail needed to qual-
ify as a guideline for practical use. As a result we end up
having huge differences in the validators that are currently
available: most of them work for general cases, but their
semantics differ significantly when analysing border cases.

The lack of a formal definition has also discouraged the
scientific community to get involved: to the best of our
knowledge there has been no formal study of general schema
specifications for JSON, nor has there been any formal dis-
cussion regarding the design choices taken by the JSON
Schema specification. A formal specification would also help
the development of automation tools for APIs. There is al-
ready software for automatically generating documentation
[14] and API clients [13, 15], but all of them suffer from the
same problems as validators.

Looking to fill this gap, we present in this paper a formal
grammar for the specification of JSON Schema documents,
and provide a formal semantics to standardise the meaning
of all the features in JSON Schema. For space reasons we
cannot present the full formal definition, but we have identi-
fied and formalised a semantic core that is enough to express
any possible JSON Schema. The full definition can be found
in our online appendix [1, 26].

Our framework allows us to conduct a formal study of
several aspects of the JSON Schema specification. We begin
with the problem of validating a JSON document against a
schema, providing tight bounds for the computational com-
plexity of this problem. We also study the expressive power
of JSON Schema as a language for defining classes of JSON
documents. Since JSON Schema is the only native schema
definition for JSON we cannot compare to other standards;
instead we provide comparison with respect to automata
theory and logic, the two most important theoretical yard-
sticks for expressive power. These theoretical tools allows

us, for example, to conclude that JSON Schema can define
relationships that are not available in the schema definitions
for XML currently used in practice.

We also study the efficiency of JSON Schema in practice
using two sets of experiments. First we analyse the impact of
validating the most involved features in JSON schema, un-
der JSON documents of increasing size, and conclude that it
is not difficult to implement a validation system that scales
well with the data. Afterwards we demonstrate a practical
use case of increasing importance: a JSON Schema defini-
tion for Wikidata [33, 31], the central storage for Wikime-
dia data [3]. We show the general picture of a Schema for
Wikidata, and then validate all 18.4 million entities in its
database, at a speed of almost 200 entities per second.
Organisation. In Section 2 we show the problems we run
into because of the lack of a formal specification and de-
fine syntax and semantics of JSON Schema. In Section 3
we prove the existence of efficient algorithms for the schema
validation problem. Next, in Section 4, using our in-house
implementation of the validation tool, we analyse the usabil-
ity of JSON Schema in practice. We conclude in Section 5.
Due to the lack of space some proofs and the full code of the
experiments is missing from the paper. All of this material
can be found in our online appendix [1].

2. A FORMAL MODEL FOR JSON
SCHEMA

One of the main problems of JSON Schema is the lack of
a formal specification. To illustrate why this is an issue we
created four border-case schemas, and validated them using
five different validators. These tests evaluate different fea-
tures that are not fully specified in the JSON Schema draft.
For example, the first test (T1) evaluates whether or not
a collection of key-value pairs is considered to be ordered,
while the other tests check the behaviour of references, re-
cursive schemas and dependencies. For space reasons the
tests and their details are left for our online appendix [1].

Table 1 shows the outcome of this process, depicting the
difference between the validators’ semantics. It is important
to mention that four of the five used validators comply to the
current draft of JSON Schema, and all of them successfully
validate the JSON Schema test-suite [4].

V1 V2 V3 V4 V5

T1: % ! ! % !

T2: ! % ! % !

T3: % ! % % %

T4: * * % * *

! valid

% invalid

* unsupported

Table 1: Validating four documents against four border-case
JSON Schemas using five different validators. The outcomes
stress the difference between the validators’ semantics.

2.1 JSON documents and JSON pointer
We start by fixing some notation regarding JSON docu-

ments and introducing JSON Pointer, a simple query lan-
guage for JSON that is heavily used in the JSON Schema
specification. For readability we skip most of the encod-
ing details with respect to these specifications; their formal
definition can be found in [5, 18].



JSON values. The JSON format defines the following
seven types of values. First, true, false and null are JSON
values. Any real number (e.g. 3.14, 23) is also JSON value,
called a number. Furthermore, if s is a string of unicode
characters then "s" is a JSON value, called a string value.
Next, if v1, . . . , vn are JSON values and s1, . . . , sn are pair-
wise distinct string values, then o = {s1 : v1, . . . , sn : vn} is
a JSON value, called an object. In this case, each si : vi is
called a key-value pair of o. Finally, if v1, . . . , vn are JSON
values then a = [v1, . . . , vn] is a JSON value called an array.
In this case v1, . . . , vn are called the elements of a.

We sometimes use the term JSON document (or just doc-
ument) to refer to JSON values. The following syntax is
normally used to navigate through JSON documents. If J
is an object, then J [“key”] is the value of J whose key is
the string “key”. Likewise, if J is an array, then J [n], for a
natural number n, contains the n-th element of J .

JSON Pointer. JSON Pointers are intended to retrieve
values from JSON documents. Formally, a JSON pointer is
a string of the form p = /w1/ · · · /wn, for w1, . . . , wn valid
strings using any unicode character.

The evaluation Eval(p, J) of a pointer p over a document
J is a JSON value that is recursively defined as follows.
Assume that p = /w/p′. Then Eval(p, J) is:

• the value Eval(/p′, J [n]), if J is an array, w is the base
10 representation of the number n and J has at least n
elements; or

• the value Eval(/p′, J [w]), if J is an object that has a pair
with key "w" (note that we have to put the value of w
between quotes to make it a JSON string); or

• the value null otherwise.

Example 1. Consider now an array storing names J =

[{"name": "Joe"},{"name": "Mike"}]. To extract the
value of the key "name" for the second object in the array,
we can use the JSON pointer p = /2/name which first nav-
igates to the second item of the array (thus obtaining the
object {"name": "Mike"}) and retrieves the value of the
key "name" from here. Therefore Eval(p, J) ="Mike".

2.2 Formal Grammar for JSON Schema
JSON Schema documents may specify any of the seven

types of valid JSON documents: objects, arrays, strings,
numbers, integers, boolean values and null; and for each of
these types there are several keywords that help shaping and
restricting the set of documents that a schema specifies. As
such, in the space given it would be cumbersome to define
JSON Schema in its completeness. Instead, we have iden-
tified a core fragment that suffices to define any possible
JSON Schema, and present now its formal grammar and se-
mantics. All of the remaining functionalities in the official
JSON Schema draft can be expressed using the functionali-
ties included in this paper. The complete definition can be
found in our online appendix [26, 1].

The formal grammar is presented in tables (2-5). It is
specified in a visual-based extended Backus-Naur form [29],
where all non-terminals are written in bold (and thus ev-
erything not in bold is a terminal). Also, for readability,
we use string to represent any JSON string, n to represent
any integer, Jval to represent any possible JSON document
and regExp to represent any regular expression. Note that
when these values get instantiated they behave as terminals.

JSDoc := { (defs , )? JSch }
defs := "definitions": { string : JSch,

(string : JSch)∗}
JSch := strSch | numSch | intSch | objSch |

arrSch | refSch | not | allOf | anyOf | enum
not := "not": { JSch }
allOf := "allOf": [ { JSch } (, { JSch })∗ ]
anyOf := "anyOf": [ { JSch } (, { JSch })∗ ]
enum := "enum": [ Jval (, Jval )∗ ]
refSch := "$ref": "# JPointer"

Table 2: Grammar for JSON Schema Documents

strSch := "type": "string" (, strRes )∗

strRes := minLength | maxLength | pattern
minLength := "minLength": n
maxLength := "maxLength": n
pattern := "pattern": "regExp"

Table 3: Grammar for string schemas

Overall Structure. Table 2 defines the overall structure
of a JSON Schema document (JSDoc). It consists of two
parts: an optional definitions section (defs), that is intended
to store other schema definitions to be reused later on, and a
mandatory schema section (JSch) where the actual schema
is specified. In turn, each schema can be either a string
Schema (strSch), a number Schema (numSch), an inte-
ger Schema (intSch), an object Schema (objSch), an array
Schema (arrSch), a reference Schema (refSch), a boolean
combination of schemas using not, allOf or anyOf, or sim-
ply the enumeration of a set of values (enum). Note how
Reference Schemas make use of JSON pointer (JPointer).

Strings. String schemas are formed according to Table 3.
We first state that we wish to represent a string using the
"type": "string" pair, and then we may add additional
restrictions to bound the length of the strings or to state
that they satisfy a certain regular expression regExp. We
illustrate some of these concepts by means of an example.

Example 2. The following schema S1 specifies strings
according to an email pattern. It has no definitions section.

{
"type": "string",
"pattern": "[A-z]*@ciws.cl"

}
The next schema, S2, includes schema S1 as a definition,

under the "email" key.

{
"definitions": {

"email": {
"type": "string",
"pattern": "[A-z]*@ciws.cl"

}
},
"not": {"$ref": "#/definitions/email"}

}

Note that the evaluating the pointer /definitions/email

on S2 yields precisely S1. Intuitively, this schema is intended
to specify all objects that do not conform to S1.

Numeric Values. Integer and number Schemas have the
same structure, shown in Table 4. The pair "type": "num-



numSch := "type": "number" (, numRes )∗

intSch := "type": "integer" (, numRes )∗

numRes := min | exMin | max | exMax | mult
min := "minimum": n
exMin := "exclusiveMinimum": true

max := "maximum": n
exMax := "exclusiveMinimum": true

mult := "multipleOf": n

Table 4: Grammar for numeric schemas

objSch := "type": "object" (, objRes )∗

objRes := prop | addPr | req
prop := "properties": { kSch (, kSch )∗}
kSch := string : { JSch }
addPr := "additionalProperties": false

req := "required": [ string (, string)∗ ]
patPr := "patternProperties":

{ patSch (, patSch )∗}
patSch := "regExp" : { JSch }

Table 5: Grammar for object schemas

ber" specifies any number, while "type": "integer" spec-
ifies integers only. We can specify maximum and/or mini-
mum values for numbers and integers (these values are not
exclusive unless explicitly stated), and also that numbers
and integers should be multiples of another number.

Objects. We specify object schemas with the "type":

"object" pair, according to the grammar in Table 5. Within
objects schemas we may use additional restrictions to con-
trol the key:value pairs inside objects. The keyword re-

quired specifies that a certain string needs to be a key of
one of the pairs inside an object, and properties is used
to state that the value of a key needs itself to satisfy a cer-
tain schema. The keyword patternProperties works like
properties, except we bound all key:value pairs whose key
satisfies a regular expression, and finally additionalProp-

erties controls whether we allow any additional key:value
pair not defined in properties or patternProperties.

Example 3. Recall the schema from the Introduction de-
scribing an API call to the weather app.

{
"type": "object",
"properties": {
"Country": {"type": "string"},
"City": {"type": "string"},

},
"required": ["Country", "City"],
"additionalProperties": false

}

As the API is expecting a JSON containing a country
name and a city name, but nothing else, our schema speci-
fies that these two keys must be present and they have to be
of type string. We also use required and additionalProp-

erties to specify that the JSON we are sending to the app
will contain precisely those two keys and nothing else.

Arrays. Finally, array Schemas are specified with the
"type": "array" pair, and according to Table 6. There are

arrSch := "type": "array" (, arrRes )∗

arrRes := itemo | itema | minIt | maxIt | unique
itemo := "items": { JSch}
itema := "items": [{ JSch} (, {JSch})∗]
minIt := "minItems": n
maxIt := "maxItems": n
unique := "uniqueItems": "true"

Table 6: Grammar for array schemas

two ways of specifying what kind of documents we find in ar-
rays. If a single schema follows the "items" keyword, then
every document in the array needs to satisfy this schema.
On the other hand, if an array follows the "items" key-
word, then it is one-by-one: the i-th document in the speci-
fied array needs to satisfy the i-th schema that comes af-
ter the "items" keyword. We can also set a minimum
and/or a maximum number of items, and finally we can use
uniqueItems to specify that all documents inside an array
need to be different.

Example 4. To illustrate how arrays function, consider
again the API described in the Introduction. Imagine now
that our API also allows us to ask information about the
weather for several places simultaneously. An obvious way
to model such requests is by using JSON arrays, where each
item of the array is a single call as in Example 3. To check
that the requests we send are using the correct format we
could validate them against the following schema.

{
"type": "array",
"items": {"$ref": "#/definitions/basic_call"}

}

Here the reference is assumed to return the schema of Ex-
ample 3.

2.3 Semantics
Intuitively, the idea is that a JSON document satisfies a

Schema if it satisfies all the keywords of this Schema. For-
mally, given a schema S and a document J , we write J |= S
to denote that J satisfies S. We sepparately define |= for
String, Number, Integer, Object and Array schemas, as well
as for their combinations or enumerations.

Combinations and References. Let S be a boolean com-
bination of schemas, an enumeration or a reference schema.
We say that J |= S, if one of the following holds.

• S is "enum":[J1, . . . , Jm] and J = J`, for some 1 ≤ ` ≤ m.

• S is "allOf":[S1, . . . , Sm] and J |= S`, for all 1 ≤ ` ≤ m.

• S is "anyOf":[S1, . . . , Sm] and J |= S`, for some 1 ≤ ` ≤
m.

• S is "not":S′ and J 6|= S′.

• S is "$ref":"#p" for a JSON pointer p, and J |=
Eval(p,D), with D the JSON document containing S.

Strings. Let S be a string schema. Then J |= S if J is a
string, and for each key-value pair p in S that is not "type":
"string" one of the following holds

• p is "minLength":n and J is a string with at least n char-
acters.



• p is "maxLength":n and J is a string with at most n char-
acters.

• p is "pattern":e and J is a string that belongs to the
language of the expression e.

Example 5. Consider again schemas S1 and S2 from Ex-
ample 2. Furthermore, Let J = ”admin@ciws.cl”. We
then have that J |= S1, because J is a string that belongs
to the regular expression in S1. On the other hand, since
the pointer /definitions/email retrieves once again S1,
schema S2 is actually equivalent to

{
"not": {

"type": "string",
"pattern": "[A-z]*@ciws.cl"

}
}

and thus J 6|= S2.

Numeric Values. Let S be a number (respectively, inte-
ger) schema. Then J |= S if J is a number (resp. integer),
and for each key-value pair p in S whose key is not "type",
"exclusiveMinimum" or "exclusiveMaximum" one of the fol-
lowing holds:

• p is "minimum":n and J is strictly greater than n.

• p is "minimum":n, J is equal to n and the pair "exclu-

siveMinimum": "true" is not in S.

• p is "maximum":n and J is strictly lower than n

• p is "maximum":n, J is equal to n and S the pair "exclu-

siveMaximum": "true" is not in S.

• p is "multipleOf":n and J is a multiple of n.

Objects. Let S be an object schema. Then J |= S if J
is an object, and for each key-value pair p in S that is not
"type": "object" one of the following holds:

• p is "properties":{k1 : S1, . . . , km : Sm} and for every
key:value pair k : v in J such that k = kj for some 1 ≤
j ≤ m we have that v |= Sj .

• p is "patternProperties":{"e1": S1, . . . , "em": Sm} and
for every key:value pair k : v in J such that k is in the
language of ej for some 1 ≤ j ≤ m we have that v |= Sj .

• p is "required":[k1, . . . , km] and for each 1 ≤ j ≤ m we
have that J has a pair of the form kj : v.

• p is "additionalProperties": "false" and for each
pair k : v in J , either S contains "properties":{k1 :
S1, . . . , km : Sm} and k = kj for some 1 ≤ j ≤ m, or S
contains "patternProperties":{"e1": S1, . . . , "em": Sm}
and k belongs to the language of ej , for some 1 ≤ j ≤ m.

Arrays. Let S be an array schema. Then J |= S if J is an
array, and for each key-value pair p in S that is not "type":
"array" one of the following holds:

• p is "items":{S′} and for each item J ′ ∈ J we have that
J ′ |= S′.

• p is "items":[S1, . . . , Sm], J = [J1, . . . , J`] and Ji |= Si

for each 1 ≤ i ≤ min(m, `).

• p is "minItems":n and J has at least n items.

• p is "maxItems":n and J has at most n items.

• P is "uniqueItems": "true" and all of J ’s items are
pairwise distinct.

Example 6. As our final example consider the schema

{
"definitions": {
"S": {
"anyOf": [
{"enum": [null]},
{"type": "array",
"not": {"uniqueItems": true},
"minItems": 2,
"maxItems": 2,
"items": [
{"$ref": "#/definitions/S"},
{"$ref": "#/definitions/S"}
]

}
]

}
},
"$ref": "#/definitions/S"

}

This schema defines a nesting of arrays where each ele-
ment is itself a json document that conforms to S: either the
null JSON or an array with exactly two elements that again
must conform to S. We can look at these objects as binary
trees, where arrays represent inner nodes and null JSONs
represent leafs. For example, here is a tree representation of
a JSON document that satisfies to this schema.

[
[null, null],
[null, null]

] null null null null

It is straightforward to show that any document validating
against this schema has to be a description of a complete bi-
nary tree. The latter constraint is enforced by having "not":

{"uniqueItems": true} clause in the object description,
thus guaranteeing that if a node has a child, it has to have
precisely two children that are equal to each other.

Well formedness. The formal grammar still allows for
problematic schemas, such as the following.

{

"definitions": {

"S": {"not": {"$ref": "#/definitions/S"}}

}

"$ref": "#/definitions/S"

}

The above defines a schema that is both S and the nega-
tion of S, and is therefore ill-designed. What is worse, any
standard validator will run into an infinite loop when trying
to resolve the references of this schema. In fact, one of the
tests in Table 1 used a schema similar to this one.

To avoid these problematic cases we introduce the notion
of a well-formed JSON Schema. Formally, let S be a JSON
schema and S1, . . . , Sn be all the schemas defined under the
"definitions" part of S. Construct from S the following
graph: the set of nodes is {S1, . . . , Sn}, and there is an edge
between node Si and node Sj if Si is a boolean combination
of schemas, and at least one of those schemas corresponds to
a JSON Pointer that retrieves Sj . Edges are only added if Si

is a combination of schemas, not if for example Si is an ob-
ject schema and the reference for Sj is under a "properties"



keyword. For instance, the graph of the document above has
only the node S and the only edge is a self loop on S.

We then say that S is a well formed schema if such a graph
is acyclic. For the rest of the paper we consider only well
formed schemas, and we propose to add this condition to
the standard as well. Note also that well formedness can be
checked in linear time.

Remark. We stress again that our definition does not cover
all of the syntactic nuances of the JSON Schema specifica-
tion [20]. What it can do, however, is to provide a reformu-
lation of any JSON Schema as specified in [20] in a concise
syntax and such that the original schema and its reformula-
tion define the same set of JSON documents.

3. FORMAL ANALYSIS
In this section we show several results regarding efficiency

of working with JSON Schema and its expressive power. We
begin with the computational cost of checking if a document
conforms to a schema. We then compare JSON Schema to
several well established theoretical formalisms such as non-
deterministic finite state automata, tree walking automata
and monadic second order logic.

3.1 Validation
The most important problem related to JSON schema is

to determine if a JSON document J conforms to a schema
S. This problem is called JSON Schema validation and is
formally defined as follows.

Problem: JSchValidation(J, S)
Input: JSON document J and JSON Schema S.
Question: Does J |= S?

Since most of JSON is used to transfer data between
web applications, developing efficient algorithms for JSON
Schema validation is of critical importance. It is thus im-
portant to understand the computational complexity of the
schema validation problem, as this gives us a good starting
point for the design of efficient validation algorithms.

We show that the problem is always in PTIME, and can
be solved in linear time with respect to both the schema
and the document as long as the Schema does not use
the uniqueItems keyword. However, the problem remains
PTIME-hard, even for JSON Schemas using a very limited
set of keywords. This illustrates that although it is possible
to solve the valuation problem efficiently, it is still harder
than for example checking if two nodes in a graph are con-
nected by a path, or determining whether a word belongs to
the language specified by a regular expression.

Let us begin with the PTIME upper bound. Given a
Schema S and a JSON document J , we derive a simple al-
gorithm that runs in time O(|J | · |S|) as long as the schema
does not contain the uniqueItems keyword. The algorithm
works as follows: we process the document key by key, while
checking conformance to the corresponding subschema in S.
The running time is linear because correspondence to each
keyword in JSON Schema can be checked in linear time (ex-
cept for uniqueItems). If S does contain uniqueItems, then
we may now need to check whether all the elements of a
given array J are unique. This check can be performed in
time O(|J | · log |J |) by first sorting the array J , thus raising
the total bound to O(|J | · log|J | · |S|). One can in fact show

that this bound is tight, as it is equivalent to computing the
lower bound of any comparison based sorting algorithm [7].
We do note that the O(|J |·|S|) bound should remain in most
practical applications even in the presence of uniqueItems,
since the sorting is likely to be performed using a hash table.
Regardless, we obtain the following:

Proposition 7. The problem JSchValidation(J, S) is
in PTIME.

And as promised, the matching lower bound is obtained
using very simple Schemas.

Proposition 8. The problem JSchValidation(J, S) is
PTIME-hard even if S contains just the restrictions allOf,
anyOf and enum.

Proof Sketch. The proof is by reduction from the
Monotone Circuit Value problem, which is known to be
PTIME-complete [11]. Given a circuit C and a valuation τ
for the gates of C, we provide a LOGSPACE reduction that
traverses the circuit starting from the root. If we encounter
an AND gate, we add an allOf restriction to the schema, with
a number of subschemas equal to the number of inputs the
gate has. If the gate is an OR we add an anyOf restriction. In
both cases we repeat the process until we reach the leafs of
C. At this point, we force the JSON instance to have either
the value true or false, depending on τ , by using the enum

restriction. Our document J is simply the value true. We
illustrate how the reduction works in Figure 1.

∧

∨ ∨

x1 x2 x3

{"allOf":[
{"anyOf":[

{"enum":[false]},
{"enum":[false]}]},

{"anyOf":[
{"enum":[false]},
{"enum":[true]}]}

]}

Figure 1: Schema for the circuit C with input values τ(x1) =
τ(x2) = false and τ(x3) = true.

In Figure 1 the allOf construct corresponds to the AND

gate of the circuit, while the two anyOf subschemas simulate
the OR gates. The input values are coded using enum in order
to equal constants true and false.

It is easy to see that J � S ⇐⇒ τ(C) = true.

3.2 Expressive Power
So far we have seen many examples of how JSON Schema

can be used in practice, but we still do not know much about
the classes of JSON documents that JSON Schema can ex-
press, and which ones it cannot. To answer these questions
it is convenient to see if JSON Schema can simulate any of
the well established formalisms for defining languages. We
provide two such comparisons: with respect to automata
and with respect to logic.

Automata. Most schema definitions for other semistruc-
tured data paradigms are heavily based on automata. In
the case of XML, for example, there has been a lot of study
in linking schema definitions to different versions of tree au-
tomata (c.f. [23]). It is therefore useful to compare with
automata formalisms, if only to understand how much does
JSON Schema depart from XML schema formalisms.



We begin by showing that JSON schema can define any
standard non-deterministic finite automaton (NFA). Obvi-
ously we can do this since we have the pattern keyword to
define strings that satisfy any regular expression. However,
we show that even if we are left with just a few keywords
(and no pattern) we can still simulate automata, with the
help of a very simple coding. This shows that JSON Schema
is inherently as expressive as NFAs, and we later use these re-
sults to argue that the power of JSON Schema is, in essence,
at least comparable to most XML schema specifications.

To formally state this result consider the coding of a word
w over a finite alphabet Σ into a JSON document J(w), that
treats each letter as a property and the following letters
as its subproperties until it reaches the end of the word,
which is represented by a null value. For example, the word
abc is coded as a JSON document {"a": {"b": {"c":

null}}}. Similarly, ad is coded as {"a": {"d": null}}.
The idea is to show that for every NFA A one can con-

struct a JSON Schema SA such that a word w belongs to
the language of A if and only if J(w) |= SA. To illustrate
this claim consider the automaton A in Figure 2.

q0start q1 q2

b

a c

Figure 2: The automaton A recognising ab* | ab*c.

To obtain a schema that will accept (up to our coding)
only the words in the language of the automaton from Fig-
ure 2 we proceed as follows. First, in the "definitions"

section of our schema we define each state of the automa-
ton. Figure 3 illustrates how is this done for the automaton
above. Namely, we have a schema for q0, q1 and q2. Each
of these schemas is intended to code the transition from
the state it describes. This is achieved by declaring that
each state is an object whose properties code the transitions
leaving the state. For instance, in order to simulate that
we can move from the state q0 to the state q1 reading the
letter a, we add "a": {"$ref": "#/definitions/q1"} to
the properties of the schema for q0. Note that here we use
$ref to switch to the schema of q1 and follow the transi-
tion. Likewise, to reflect that a non deterministic choice is
available, we use the anyOf keyword. For instance, this is
reflected in Figure 3 when describing the transitions of q1.
Finally, in order to signal that a sate is accepting, we allow
it to be of type null, such as e.g. for q1 and q2. The full
transformation is given in Figure 3.

It is now straightforward to see that a word w belongs to
the language of the automaton A from Figure 2 if and only
if J(w) validates against the schema from Figure 3. Note
that the documents conforming to the schema above are
not allowed to have additional properties, so the document
J(ad) will not validate against the schema. On the other
hand, J(abc) does validate as desired.

Although the procedure described above treats one partic-
ular automaton, it also shows how to construct a schema for
an arbitrary automaton. We therefore obtain the following.

Proposition 9. JSON Schema can simulate finite state
automata even when it only uses definitions, references, sin-
gle enumeration and combinations of schemas.

We also note that the translation from automata to JSON
is very simple, and can be computed in linear time. The re-

{
"definitions": {

"q0": {
"type":"object",
"properties": {

"a": {"$ref": "#/definitions/q1"}
},

"additionalProperties": false},
"q1": {

"anyOf": [
{"enum": [null]},
{"type": "object",
"properties": {

"b": {"$ref": "#/definitions/q1"},
"c": {"$ref": "#/definitions/q2"}

},
"additionalProperties": false}

]},
"q2": {"enum": [null]}

},
"$ref": "#/definitions/q0"

}

Figure 3: JSON Schema for the automaton in Figure 2.

sult above is important for several reasons. First of all, it
shows us that even when using a very restricted set of key-
words, we can simulate automata. This means that the core
operators of JSON Schema already have quite high expres-
sive power. Second, using Proposition 9, we can show that
checking whether there is any document that conforms to a
given Schema S, is computationally hard. This problem is
often referred to as the schema consistency problem. Since
we know that JSON schemas can simulate finite state au-
tomata, using the keyword not we can also use the construc-
tion above to simulate their containment, a problem that is
known to be PSPACE-hard [17].

But this construction gives us much more, as it can be
generalized to simulate a more expressive class of automata
known as tree automata [6]. One consequence of this result is
that the schema consistency problem is at least EXPTIME-
hard, since this is the complexity of the consistency problem
for tree automata. The other consequence, as we mentioned
in the introduction, is that we now know with certainty that
the logic behind JSON Schema is, at least, comparable to
that of XSDs and other XML schema specifications, since
the logic of these formalisms is captured by tree automata.

But is the converse true? Can we use automata to some-
how simulate the validation process of JSON Schema? Un-
fortunately, this is not the case. Indeed, the schema in Ex-
ample 6 is used to simulate the family of complete binary
trees, which cannot be recognised by tree automata [6].

Logic. When studying basic properties of formal specifica-
tions such as the one of JSON Schema, one is often interested
in whether they can be expressed in well studied formalisms
such as first or second order logic. Not only will this al-
low us to apply known results on the expressiveness of our
specification, but it can also give us some insight into how
difficult certain problems are computationally. Because of
this we next show that JSON Schemas can be expressed in
monadic second order logic (MSO), a powerful logical for-
malism often used to cover languages containing some form
of regular expressions [21]. For ease of exposition we focus
on a simplified version of JSON Schema, where only Object
Schemas and Strings Schemas are allowed (but not Integer,
Number or Array Schemas). However, one can show that



our results continue to hold for any fragment of the full
JSON Schema [1, 26, 20] that does not use the uniqueItems

keyword (which we show not to be definable in MSO).
To understand the connection with logic it is best to con-

sider every JSON instance J as an unranked unordered tree
T (J) (recall that we do not consider arrays here), whose
leafs are either empty object instances or strings. For ex-
ample, Figure 4 shows a simple JSON document and its
representation as a tree structure.

{
"player": "Joe",
"club": {

"name": "Chelsea",
"league": "Premier"
}

}

0

00

"Joe"

01

010

"Chelsea"

011

"Premier"

"player" "club"

"name" "league"

Figure 4: A JSON J and its tree representation T (J).

We then represent these trees as MSO structures using
binary relations Child, Key and Value, and unary relation
Root. The interpretation of Child and Root is the usual one;
additionally we use Key to store the key of the key:value
pairs in the document (such as "player" or "name" in Figure
4), and Value to store the value of a given string node (such
as "Joe" or "Chelsea").

The key observation now is that each JSON Schema can
be described using an MSO formula over T (J). Instead of
giving the full translation we illustrate how it works using
the following example. Consider first the schema S below.

{
"type": "object",
"properties": {"player": {"type": "string"}},
"required": "player"
}

This schema specifies all objects that have a player at-
tribute whose value is a string. In particular, the document
from Figure 4 validates against this schema. An MSO for-
mula equivalent to this schema would be:

∃x∃y
(

Root(x) ∧ Child(x, y)∧

Key("player", y) ∧ ∃z
(
Value(y, z)

))
Intuitively, this formula checks if there is a child of the root,
accessible via an edge labelled "player" whose value is a
string. Using the codification from Figure 4 this is equiva-
lent to saying that the JSON document has a key:value pair
with key being "player" and the value a string, as desired.
Other JSON Schema constructs can be simulated by MSO
operators in a similar way. Note that we need to use second
order properties only to deal with definitions and references,
and to simulate regular expressions (here we use the Value
relation in a non trivial way); all other keywords are express-
ible in first order logic. Generalising this construction in a
similar way as done in [22], we obtain the following.

Theorem 10. For any JSON Schema S there exists an
MSO formula FS such that for every JSON document J we
have that J |= S is and only if T (J) |= FS.

Observe now that, since JSON Schemas can be described
using MSO formulas, and since for each JSON document
J the structure T (J) has bounded tree width (as it is es-
sentially a tree), Courcelle’s theorem [8] applies. This once

again gives us that the validation problem can be solved in
time that is linear in the size of the input JSON document.

As we have mentioned, one can extend this result to ap-
ply for every JSON schema not using the uniqueItems key-
word. On the other hand, for the case of schemas using
uniqueItems we can also show that these schemas are not
definable in MSO. To see this, recall Example 6, that ex-
presses documents representing complete binary trees. It is
not difficult to show that this property cannot be accepted
by a non-deterministic tree automata, and thus it cannot be
expressed in MSO, as tree automata and MSO are equivalent
in expressive power [6]. This also explains why uniqueItems

keyword cannot be validated in time that is linear in the size
of the input document, as discussed previously.

4. PRACTICAL CONSIDERATIONS
In this section we conduct an experimental analysis on the

efficiency and applicability of JSON schema. We first ran a
series of experiments in which we tested our own validator
under JSON documents of increasing sizes; the results are
summarized in Subsection 4.1. We then show in Subsection
4.2 a real use case where JSON Schema can be naturally
applied in practice, namely the Wikidata database [33].

4.1 Experimental analysis
To evaluate how the validating process fares when fac-

ing more involved features of JSON schema we conducted
four sets of experiments covering a wide range of features:
recursive calls using references, objects with a high num-
ber of nesting or additional properties, and the validation of
uniqueItems for arrays with a big number of items.

We implemented our own validator that works exactly as
described in the formalisation of this paper. For each ex-
periment we created a schema, and measured the time that
takes to validate documents of increasing size against this
schema. We wanted to see how our validator performs on a
typical personal computer, so we used a machine with 8 GB
of RAM and a 2.9 GHz Intel Core i5 processor.

We begin by testing how our validator performs when
dealing with recursive calls that use JSON references. The
first schema we test against checks if our JSON document is
a binary tree.1 As data we use complete binary trees of in-
creasing depth. The results of this experiment are displayed
in Figure 5 (a). Observe that this figure uses a logarithmic
scale for time, which is only fair, since the number of nodes
in the tree increases exponentially with the depth (for in-
stance, for depth 20 we have around 2 million nodes, while
for depth 22 this raises to over 8 million).

The second schema we test against uses $ref in order
to reach a basic type in a nested JSON object. The doc-
uments we are validating against this schema will be ob-
jects with increasing nesting depth (i.e. objects of the type
{"x":{"x":{"x": true}}}) and the results are presented
in Figure 5 (b). As expected from the results of Section 3.1
the validator displays linear behaviour.

The third schema simply tests that each property of an
object is of a certain type, against JSON objects that contain
an increasing number of key:value pairs. As we can see from
Figure 5 (c), the validation is very efficient, even when we

1Due to the lack of space we only provide a high-level de-
scription of the schemas used. The actual schemas, together
with the data used, can be found at [1].
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Figure 5: Performance of different tests on documents of increasing size.

are dealing with hundreds of thousands of key:value pairs.
The final schema tests if an array has unique items. As the

data we use arrays containing varying number of complete
binary trees with around four thousand nodes. The perfor-
mance, shown in Figure 6, confirms the results from Section
3.1 which state that we can not expect linear time validation
when dealing with schemas using the uniqueItems keyword.
The running time however is quite reasonable, even when
dealing with a large quantity of complicated objects.
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Figure 6: Testing uniqueItems for arrays of varying size.

It is important to note that these experiments use very de-
manding documents (e.g. complete binary trees). This gives
us realistic upper bounds on the performance, but running
times in practice should be much faster.

As we can see the results we obtain are encouraging and
suggest that even when files weighing up to a hundred MB
are validated against non trivial schemas we can get the
answer in at most a few minutes using a typical developer
machine. This additionally illustrates that JSON Schema
validation is a process that does not require server side sup-
port and can thus be done locally when working with the
JSON data format. Therefore our experimental results im-
ply that including JSON Schema validation in the applica-
tion development process is already a viable option.

4.2 Use Case: Wikidata
JSON is also used for storing data, and is the format

of choice for several document-oriented databases such as
MongoDB [24] and CouchDB [28]. The advantages of hav-
ing a schema definition in a classical database scenario have
long been recognised by the community, and we believe that
JSON databases would benefit from JSON Schema in the
same way. To analyse these advantages we choose to study
Wikidata and show how JSON Schema can be used to de-
scribe the structure of its documents.

Wikidata is a free linked database that acts as central

storage for the data of its Wikimedia sister projects includ-
ing Wikipedia, Wikivoyage, Wikisource, and others [33]. As
far as we know, Wikidata has the biggest JSON database on
the web with more than 60GB of information. The data is
constantly made available in the form of JSON data dumps,
and there is also a wide range of APIs and tools available for
connecting to Wikidata. As of today, consuming this data
is a complicated process, as users need to learn the details
of the data format by trial and error, and small changes
in the underlying structure of the files usually means that
some of this knowledge must be re-learned again. Moreover
the amount of insertions and deletions in Wikidata is quite
high, and there is always the chance that some of these op-
erations may introduce noisy data. A schema definition for
Wikidata could also be used to avoid some of these errors,
by performing regular validation checks against the schema.

Data Format. Before explaining the schema we give a brief
overview of how Wikidata stores its information. The funda-
mental storage units of Wikidata are entities, which can be
of two main classes: items and properties. Items are used to
represent any type of thing, such as “Europe”, “Mountain” or
“Alan Turing”, while properties represent statement about
entities, such as“highest point”or“occupation”. Each entity
is stored in the Wikidata dabatabase as a JSON object that
has a series of basic properties, following the form below:

{
"type": "item",
"id": "Q46",
"labels": {...},
"claims": {...}

}

A document of this form is intended to store the data for
the item Q46. We can know whether a document represents
an item or a property by its type keyword: in this case it
is set to "item" (additionally, the ids of items start with Q
and the ids of properties with P). Each entity also contains
several complex objects, two of which are keyed with labels

and claims. The value of labels contains the label of the
entity under possibly several languages, following this form:

"labels": {
"en": {
"language": "en", "value": "Europe"
}, ...

Moreover, the value of claims contains all those proper-
ties related to the entity in question. Very roughly, it is an
object with the following form:

"claims": {
"P610": [



{...
"value": {

"entity-type": "item",
"numeric-id": 43105

}, ...
} ...

This object tells us that entity Q46 is connected with the
item Q43105 (“Mount Elbrus”) through the property P610
(“Highest Point”), or that the highest point of Europe is
Mount Elbrus. Each key-value pair in claims represents a
particular statement about the entity (or an array of state-
ments using the same property). These pairs have the prop-
erty as the key, and the value of these pairs contains the rest
of the statement (among other things).

Schema. As we have mentioned, the outermost structure is
an object with at least four key:value pairs. The keys are: id,
type, labels and claims. The value of id is a string that starts
with P or Q, the type can be either item or property, and
labels and claims are more complex objects; we define their
schemas under the definitions section and then reference it
using the $ref keyword. The following schema describes the
class of objects we have discussed.

{
"definitions": {
"labels": {...},
"claims": {...}

},
"type": "object",
"required": ["type","id","labels","claims"],
"additionalProperties": false,
"properties": {
"id": {

"type": "string",
"pattern": "^(P|Q)[0-9]+$"

},
"type": { "enum": ["item","property"] },
"labels": {"$ref": "#/definitions/labels"},
"claims": {"$ref": "#/definitions/claims"}

}
}

The value of labels is captured by the following schema:

"labels": {
"type": "object",
"additionalProperties": {

"type": "object",
"required": ["language","value"],
"properties": {
"language": {"type": "string"},
"value": {"type": "string"}

}
}

}

Note the nesting under the additionalProperties key-
word. This states that the outermost object may have any
number of pairs, but all of them need to satisfy the schema
stated under the additional properties keyword.

The incomplete schema below conveys the most important
information regarding claims: each pair in claims needs to
have a key that starts with P (i.e. a property), and the value
of each of these statements lies further inside the document.

"claims": {
"type": "object",
"patternProperties": {
"^P[0-9]+$": {

...

"entity-type": {"type": "string"},
"numeric-id": {"type": "integer"}
...

}

Note that each of the keys mentioned under claims is
an entity on its own, and therefore it has its own document.
For instance, we can find the document for property P610 on
the Wikidata database, with further statements about this
property (such as the statement “see also”: “deepest point”).
It is important to keep these references up to date, as it is
easy to loose these links when data is deleted or modified.
Unfortunately JSON Schema is not designed to enforce this
type of constraints. We believe this is an important direction
for future work on JSON Schema.

Validation. Wikidata publishes a regular dump of their
data [32]. This dump is a JSON array, and each of the
items in this array is a different Wikidata entity.

To show the practical applicability of JSON Schema we
decided to run a complete validation of Wikidata’s more
than 18 million entities. To treat each entity as a separate
JSON document we created a simple script that extracts
each entity of the document and validates it against our
schema. We used a computer with 4 GB of RAM and a
Quad-Core Intel Xeon E5 3.7 GHz processor. The results of
our validation are given in the table below.

Entities validated: 18375981
Total time: 27.251 hours

Entities per second 187.312
Average time per entity: 0.005 seconds

The size of the database is almost 60 gigabytes, so any
sequential algorithm is going to need some time to process
this data. However, the total running time can easily be
shortened by running several validations in parallel; what is
important for us is that validating a single JSON document
in practice takes just a few milliseconds, and our validator
can handle nearly 200 documents per second. We believe
this is a strong indicator of the feasibility of implementing
real-time JSON Schema validation in web applications, and
that databases such as Wikidata should be able to run pe-
riodic validation checks without much computing overhead.

5. CONCLUSIONS AND FUTURE WORK
Motivated by the problems that arise from the lack of

formal specification for JSON Schema in this paper we pro-
vided the first formal definition of its syntax and semantics.
Furthermore, we conducted a formal study of the schema
validation problem, showing that efficient algorithms for
solving this problem exist. To illustrate the applicability
of JSON Schema in practice we also test our own imple-
mentation of the validation tool and show that it woks well
both when processing synthetically generated data and when
tested against the entire Wikidata database.

One thing we noticed while analysing use case scenarios
for JSON Schema is the lack of integrity constraints which
might be a potential problem in JSON documents. In future
work we would like to address this issue by including a mech-
anism for handling integrity constraints into JSON Schema
definition and showing how these can be implemented to
work in practice.
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